

KENBAK-1 Replica

Operation

Instructions

Copyright © 2021 Chris Davis

Up-to-date instructions are always available at

www.adwaterandstir.com/kenbak

History – Courtesy of the

Inventor
John Blankenbaker was enrolled at Oregon State

University from 1948 to 1952. During this period,

announcements were made in the public media of new devices

called computers. If there were photographs accompanying the

story, they always showed massive pieces of equipment. There

were no explanations as to how these machines actually

worked.

In the summer between his junior and senior years John

was enrolled as an intern at the National Bureau of Standards,

as it was then called. There were approximately 100 student

interns and they were assigned to positions randomly. John was

one of four assigned to the SEAC project. SEAC stood for the

Standards Eastern Automatic Computer. It was another large

unique machine that had its own building to house it and the

people who designed it and maintained it. SEAC was a working

computer though modifications to improve its characteristics

were being developed. Two of the take-aways were that SEAC

was designed with Boolean algebra and that it was a stored

program computer which kept the program of instructions (in

the form of numbers) which told how to solve a problem in the

memory with the data.

When John graduated from college one year later, he

was employed by Hughes Aircraft Company. They had

developed a computer for use on airplanes. This computer was

not much larger than a breadbox, say a fat briefcase. Again it

was a stored program computer which had been designed with

Boolean algebra. Though the clock rate in the Hughes computer

was slower than SEAC’s, the machines were comparable in

performance. At this time, vacuum tubes were the active power

source and germanium diodes were the implementation of the

Boolean logic. These diodes were so expensive that each night

an inventory had to be made of them.

 Hughes Aircraft decided to design computers for use in

the commercial market. This led to a design which was much

more sophisticated than the airborne computers. It still used

vacuum tubes and diodes but the input and output equipment

was much more elaborate, including printers, card readers, and

magnetic tape units.

 Some of the commercial and military work was simpler

than the large and expensive commercial machines. This led

John to search for a simple computer. He did find that only one

logic flipflop was needed. The description of a larger computer

could be stored in the memory of a small machine. This small

machine would evaluate what the larger computer, whose

description was stored in its memory, would have found. This

simple machine was described in the article “Logically

Microprogrammed Computers.”

 Smaller computers were available though generally

beyond the price that an individual could afford. The alternative

that was appearing was remote time sharing. Instead of having

a computer, one could have a printing terminal connected by

phone lines to a large computer where all of the logic and data

was stored. These central computers would have programs such

as BASIC. These arrangements were not inexpensive. The cost of

the communications to the central computer could be

significant if the connection time were extended.

 John felt that the existence of a small computer, even

with sharp limitations, could be an excellent training device for

would be programmers. Primarily intended for beginners, a

small computer could also be entertaining for experienced

people. John carried these ideas in his head for more than ten

years.

 Due to a management realignment at the company

where he worked, John found that he was unemployed with a

small cash settlement. He decided that if he were ever to bring

his ideas to market this might be the best time. In the last few

months of 1970 and the first few months of 1971, he designed

the Kenbak-1 computer which was publically shown in the

spring of 1971. Over the summer, a corporation was formed

and some capital was raised. With an ad in the September issue

of Scientific American, the first unit was sold. Approximately

forty machines were sold including three or four outside the

USA.

 The marketing emphasized schools which John later felt

was a mistake. Budgeting for capital expenditures takes time

and Kenbak Corporation was not that well capitalized.

- John Blankenbaker, July 2021

First advertised in the September 1971 issue of Scientific

American (and later hailed as the “First Personal Computer” by

the Boston Computer Museum), the Kenbak-1 remains a

remarkable achievement!

Using the KENBAK-1

Replica
Much of this text is from Mark Wilson’s original documentation

for his “Kenbak-uino” project from 2011.

Introduction
Not long after discovering the Arduino it seemed to me it could

be a fun project to re-create an early computer, one with just

LEDs and switches. I looked at things like the Altair 8800 (1975)

but it has 30+ LEDs and 20+ switches and seemed like too much

work.

Then I stumbled on the KENBAK-1 (1971). Perfect! Only a

dozen LEDs and 17 switches. As a bonus it was the 40th

anniversary of its introduction. I found a reasonable amount of

information online, starting at the Wikipedia article:

http://en.wikipedia.org/wiki/Kenbak-1.

This is a software emulation of the KENBAK-1's CPU, and

method of operation, together with a basic recreation of the

hardware.

Operation
The basic operation is to enter values with the 8-bit switches on

the left (0 through 7). CLEAR clears them all. The bits toggle

on/off when a button is pressed. Pressing SET sets the address

register to the displayed value. Pressing STORE writes the

displayed value into the memory at the address and increments

the address.

In this way programs can be entered. Like the original, the

nanoKenbak-1 has only 256 bytes of memory and no registers,

however some memory locations act like registers:

Register Address

A 000

B 001

X 002

Program Counter 003

Output Register 200

Input Register 377

Also, memory locations 201, 202, and 203 were assigned to hold

the overflow and carry bits from the A, B, and X registers,

respectively.

START starts the program running.

STOP halts it.

STOP+RUN single-steps.

DISP displays the current address.

READ reads the memory at the address.

For more details - refer to the online information. For examples

- see the scans of the original manuals available at

www.adwaterandstir.com/operation-kenbak. These manuals

include:

 Theory of Operation Manual

 Programming Reference Manual

 Programming Worksheets

 Laboratory Exercises Manual

Extensions
Mark added a few extensions to the basic KENBAK-1 behavior.

Extension: SysInfo Instructions

The KENBAK-1 instruction set includes 3 NOOP (no-operation)

op-codes: 02Q0, 03Q0 and 031R+[Second Byte] (Q=0..7, R=3..7).

I've chosen a particular value of the latter, 0360, to implement

an "operating system" SysInfo extension rather than no-

operation. (I use 0300 when a real NOOP is required.) The

execution of any of the NOOPs is handled by the virtual method

 virtual bool OnNOOPExtension(byte Op);

on the CPU class. On the base class it does nothing (just returns

true to indicate execution can continue). On the Sketch's

derived ExtendedCPU class it traps the 0360 NOOP and execute

the SysInfo function as follows:

The value in the A register sets the operation: if the high bit is

set, the operation is a "write" otherwise it is a "read". The

remaining 7 bits provide the Index of the item. The argument

for a write comes from the B register.

The result of a read is placed in the B register.

Note that some writes actually perform an *action* and the

corresponding reads do nothing. Executing the SysInfo

instruction resets the CPU speed.

http://www.adwaterandstir.com/operation-kenbak

The first 8 values for the Index read/write the DS3231 RTC

registers. Numbers are BCD (Binary Coded Decimal).

 000: Seconds (00..59)

 001: Minutes (00..59)

 002: Hours (00..23) (always 24-hr, no matter how the RTC is

configured)

 003: Day (01..07)

 004: Date (01..31)

 005: Month (01..12)

 006: Year (00..99)

 007: Control

No validation is performed.

The next 8 values read/write bytes to the subsequent 8 bytes of

"user" RAM in the DS2321:

 010: Flags controlling the Kenbak.

Currently only 1, if b0 is set, pressing one of the Data switches

toggles the bit, otherwise it only sets it (as per the KENBAK-

1).

011: EEPROM Page Map

See EEPROM Extension. The value of this byte defines how the

1k of EEPROM is partitioned into 8 pages starting with #0 of 256

bytes. Bits in the Map indicate if subsequent pages should be

half the size, a 1 means halve, a 0 leaves the size as-is. The least

significant bit applies to page #1 -- if it should be half the size of

#0 (i.e. 128 bytes). Thus for example, a Map of 012 creates the

following page sizes: 256, 256, 128, 128, 64, 64, 64

000 creates 4 full-size pages (higher pages are ignored): 256,

256, 256, 256

 012: User #1

 013: User #2

 014: User #3

 015: User #4

 016: User #5

 017: User #6

These 6 bytes are available for reading and writing non-volatile

values.

The final 6 Index values act as follows:

020: Control LEDs

Reading does nothing. Writing sets the control LEDs as follows:

 b0:INP

 b1:ADDR

 b2:MEM

 b3:RUN

The upper 4 bits control the intensity of the RUN LED, 0000 =

max brightness (PWM=255), 1111 = min (PWM=16).

021: Random

A read returns are random byte, 0..255 in B. Writing a 0 seeds

the random number generator using the time etc. Writing a

non-0 value uses that as the seed.

022: Program delay milliseconds

Reading does nothing. Writing delays execution for the given

duration.

This is separate from the "CPU Speed" (Extension #7 below.)

023: Serial

Reads or writes a byte from the Serial port (@38400baud)

0177: Reading this special value simply returns 0 in Register A,

indicating that extensions are enabled. Writing does nothing.

Extension: Blank

Pressing STOP+CLR (i.e. Press STOP and without releasing it

press CLR) turns off all LEDs.

Extension: Erase

Pressing CLR+STOR sets all memory to 0 *except* 03 (P register)

which is set to 04. The address register is set to 04, ready to

enter a program. The CPU speed (BitN-STOP, Extension below)

is set to 0.

Extension: Library

Pressing STOP+BitN loads one of eight pre-defined programs:

N Description

0: Simple counter

1: Pattern

2: Counting Clock

3: BCD Clock

4: Binary Clock

5: Das Blinken Lights (random pattern)

6: Sieve of Eratosthenes

7: Set Clock

Extension: EEPROM

Pressing BitN+STOR writes program memory to EEPROM at

"page N". Pressing BitN+READ reads program memory from

EEPROM at page N. The ATmega328 has 1k of EEPROM, by

default this is divided into 8 "pages" of various sizes:

 N Size

 0: 256

 1: 256

 2: 128

 3: 128

 4: 64

 5: 64

 6: 64

 7: 56

Program memory is always read from or written to starting at

address 000.

Thus Bit7+STOR writes the *first* 64 bytes (addresses 000

through to 077) of program memory to EEPROM address 960.

Bit0+READ reads all 256 bytes of program space (addresses 000

through to 0377) from EEPROM address 0. Note that EEPROM

memory which has not been written to will be read as 0377

(Unconditional JUMP AND MARK INDIRECT).

Extension: SystemInfo

Pressing STOP+READ executes a SysInfo read. The Index is

taken from the Address register; the result is placed in the

Output register (0200).

Pressing STOP+STOR executes a SysInfo write. The Index is

taken from the Address register (there is no need to set b7), the

argument is taken from the Input register (0377).

All SysInfo calls are available programmatically and from the

front panel but some make more sense that others (for example

Delay from the front panel).

Extension: CPU Speed

Pressing BitN+STOP sets the "CPU speed". It sets the delay in

milliseconds added after each CPU cycle, equal to 2^N ms. Thus

b0+STOP sets the delay to 1ms. b7+STOP sets it to 128ms. The

delay is set to 1 at power on and on CLR+STOR (Extension: Erase

above) of if a program executes the SysInfo instruction, 0360.

Programs

--Count (STOP+Bit0):

Simply increments the OUTPUT register. Will be a blur unless

slowed-down with BitN+STOP.

---Pattern (STOP+Bit1):

Cylon-style single LED moving left-right-left etc. Will be a blur

unless slowed-down with BitN+STOP.

---Counting Clock (STOP+Bit2):

Alternates between showing the hours and the minutes.

Minutes display in five minute increments (blinking LED = add

five minutes.

---BCD Clock (STOP+Bit3):

Scrolls back and forth between showing the hours and the

minutes in BCD. The minutes display has the left most (b7) LED

blinking.

--Binary Clock (STOP+Bit4):

Shows the time in binary. The minutes are shown on the Data

LEDs with the left most (b7) LED blinking. The hours are shown

on the Control LEDs.

--Das Blinken Lights (STOP+Bit5):

Just blinks all the LEDs, old-school.

---Sieve (STOP+Bit6):

Builds a table of the odd numbers up to 255 and applies the

Sieve of Eratosthenes to them. Then display the primes,

HALTing after each one (hit START to proceed to the next one).

---Set Clock (STOP+Bit7):

Follow this procedure to set the time:

1. STOP+Bit7 to load the set clock program

2. CLEAR

3. SET (sets the address to 000)

4. Enter hours (24 hour format) in BCD

 example: 0001 1000 (018 BCD = 6PM)

5. STORE (saves to A register)

6. Enter minutes in BCD

 example: 0101 0100 (054 BCD = 54 minutes)

7. STORE (saves to B register)

8. RUN (runs the program, sets time to 18:54

Programming Example
Try entering this program into your Kenbak-1:

003 {Set}{Clear}

004 {Store}{Clear}

103 {Store}{Clear}

001 {Store}{Clear}

134 {Store}{Clear}

200 {Store}{Clear}

003 {Store}{Clear}

001 {Store}{Clear}

043 {Store}{Clear}

010 {Store}{Clear}

344 {Store}{Clear}

004 {Store}{Start}

The numbers are octal, and each octal digit is entered as a

three-bit binary number. That’s what the numbers under the

LEDs are for. For example, the octal number 134 would be

entered in the Kenbak-1 as

Yeah, programming was hard back then!

Serial Communications
The original Kenbak-1 did not have a serial port or any I/O

method other than the incandescent lamps and push buttons.

Because it was simple to implement, the replica Kenbak-1 does

include a method to save and load data via the USB serial port.

http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0016.jpg

Most computers will recognize the serial port when the Kenbak-

1 in connected. If your computer doesn’t, download and install

the CH-340 serial drivers. You can use a free utility like PuTTY,

Tera Term, or CoolTerm to view/send the data.

Write out memory to USB serial port:

Press BitN+DISPLAY writes program memory as 16 lines of 16

bytes of octal data to the serial port. BitN sets the baud rate as

shown below.

Read memory from USB serial port:

Press BitN+SET reads program memory from the serial port.

BitN sets the baud rate as shown below.

By default the program expects octal constants, delimited by

almost anything (comma, newline, etc.)

Prefix hexadecimal constants with 0x. Use uppercase A through

F.

Each number is treated as a single byte and written to program

memory, starting from address 000.

The operation halts when:

 the 256th byte is written to memory

 either an 'e' or an 's' (lowercase) is read from Serial

(i.e. end/stop).

 STOP is pressed

When running, the program displays the most significant nibble

of the current address (hex).

When finished it displays the length and checksum (sum modulo

256) in hex:

[0123456789ABCDEF] len=0x100 chk=0x9E

Examples

A file containing this:

0000,0000,0000,0004,0023,0220,0123,0000,0360,0023,

0221,0123,0000,0360,0023,0021,0360,0134,0002,0023,

0021,0360,0134,0001,0134,0000,0323,0017,0034,0001,

0023,0220,0360,0023,0222,0123,0024,0360,0024,0001,
0001,0034,0001,0023,0220,0360,0234,0200,0023,0222,

0123,0050,0360,0343,0016,s

or this:

0x00 0x00 0x00 0x04 0x13 0x90 0x53 0x00 0xF0 0x13 0x91
0x53 0x00 0xF0 0x13 0x11 0xF0 0x5C 0x02 0x13 0x11 0xF0

0x5C 0x01 0x5C 0x00 0xD3 0x0F 0x1C 0x01 0x13 0x90 0xF0

0x13 0x92 0x53 0x14 0xF0 0x14 0x01 0x01 0x1C 0x01 0x13

0x90 0xF0 0x9C 0x80 0x13 0x92 0x53 0x28 0xF0 0xE3 0x0E

e

will upload Das Blinken Lights.

Higher baud rates may be less reliable, although setting a

transmit delay may help.

BitN baud rates:

 0 = 4800 baud

 1 = 9600 baud

 2 = 19200 baud

 3 = 38400 baud

Run Program at Power-On
You can set a stored program to launch at power-up.

To load a pre-defined program:

With the power off, press STOP+BitN, where N = the button

representing the pre-loaded program (eg. STOP+3 for the BCD

real-time clock.) While holding the buttons, turn the power on.

Release buttons after the power-on "animation".

To load a user-saved program:

With the power off, press READ+BitN, where N = the "page" of

memory you would like loaded. While holding the buttons, turn

the power on. Release buttons after the power-on "animation".

To prevent any program from loading (default condition):

With the power off, press STOP. While holding the button, turn

the power on. Release button after the power-on "animation".

To return all settings to defaults:

With the power off, press STOP+CLEAR. While holding the

buttons, turn the power on. Release buttons after the power-

on "animation".

Disassembling Your KENBAK-1
If you absolutely need to get inside your Kenbak-1, start by

removing the back panel. That is held in place by six screws and

six U-clips. The front panel is held in place with six M3 bolts and

nuts. The nuts can be removed after you have removed the

back panel. The USB extension can be removed by carefully

unplugging it from the UART module.

K E N B A K u i n o © Mark Wilson 2011

Software emulation of a KENBAK-1.

Released under Creative Commons Attribution, CC BY

http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0016.jpg
http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0016.jpg

